Matrizen - lernen mit Serlo! (2024)

Matrizen - lernen mit Serlo! (1)

Eine Matrix ist eine Anordnung von Einträgen, die als Rechteck dargestellt wird.

Anwendung finden Matrizen unter anderem bei der Lösung von linearen Gleichungssystemen und als Berechnung von linearen Abbildungen.

Struktur

AMatm×nA\in\text{Mat}_{ m\times n}AMatm×n (Matm×n\text{Mat}_{ m\times n}Matm×n bezeichnet die Menge aller m×nm \times nm×n Matrizen)

AAA besteht aus mmm Zeilen und nnn Spalten.

Die Einträge aija_{ij}aij nennt man "Elemente".

Ist die Anzahl der Spalten gleich 1, nennt man eine Matrix auch Vektor.

Besondere Matrizen

Nullmatrix

Bei einer Nullmatrix sind alle Elemente Null:

Beispiel: 2×32\times32×3 Nullmatrix         N=(000000)\;\;\Rightarrow\;\;{ N}=\begin{pmatrix}0&0&0\\0&0&0\end{pmatrix}N=(000000)

Einheitsmatrix

Die Einheitsmatrix besitzt in der Diagonale nur Einsen und sonst nur Nullen. Die Größe hängt von der Dimension der Matrix ab.

Beispiel: 3×33\times33×3 Einheitsmatrix         E3=(100010001)\;\;\Rightarrow\;\;{ E}_3=\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}E3=100010001

Diagonalmatrix

Die Diagonalmatrix ist der Einheitsmatrix sehr ähnlich. Sie besitzt nur auf der Diagonale Werte und sonst nur Nullen. Diese Werte müssen aber nicht unbedingt 111 sein.

        \;\;\Rightarrow\;\; Einheitsmatrix ist eine besondere Diagonalmatrix.

Beispiel: 4×44\times44×4 Diagonalmatrix: (2000050000800005)\begin{pmatrix} 2&0&0&0\\0& 5&0&0\\0&0& 8&0\\0&0& 0&5\end{pmatrix}2000050000800005

Addition von Matrizen

Es können nur Matrizen mit gleicher Anzahl von Zeilen und Spalten addiert werden.

Die Elemente werden einzeln addiert:

(a11a1nam1amn)+(b11b1nbm1bmn)=(a11+b11a1n+b1nam1+bm1amn+bmn)\begin{pmatrix}{ a}_{11}&\cdots&{ a}_{ 1n}\\\vdots&\ddots&\vdots\\{ a}_{m1}&\cdots&{ a}_{mn}\end{pmatrix} + \begin{pmatrix}{ b}_{11}&\cdots&{ b}_{ 1n}\\\vdots&\ddots&\vdots\\{ b}_{m1}&\cdots&{ b}_{mn}\end{pmatrix}=\begin{pmatrix}{ a}_{11}+{ b}_{11}&\cdots&{ a}_{ 1n}+{ b}_{1n}\\\vdots&\ddots&\vdots\\{ a}_{m1}+{ b}_{m1}&\cdots&{ a}_{mn}+{ b}_{mn}\end{pmatrix}a11am1a1namn+b11bm1b1nbmn=a11+b11am1+bm1a1n+b1namn+bmn

Beispiel für 3x2 Matrizen:

Die Matrizenaddition ist assoziativ, kommutativ und besitzt die Nullmatrix als neutrales Element.

Multiplikation mit Skalar

Ein Skalar ist hier eine Zahl. Multipliziert man eine Matrix mit einer Zahl, wird jedes Element mit der Zahl multipliziert:

s(a11a1nam1amn)=(sa11sa1nsam1samn)s \cdot \begin{pmatrix}{ a}_{11}&\cdots&{ a}_{ 1n}\\\vdots&\ddots&\vdots\\{ a}_{m1}&\cdots&{ a}_{mn}\end{pmatrix}=\begin{pmatrix}s\cdot{ a}_{11}&\cdots&s\cdot{ a}_{ 1n}\\\vdots&\ddots&\vdots\\s\cdot{ a}_{m1}&\cdots&s\cdot{ a}_{mn}\end{pmatrix}sa11am1a1namn=sa11sam1sa1nsamn

Beispiel für eine 3x2 Matrix:

Die Multiplikation mit einem Skalar ist kommutativ.

Multiplikation mit einem Vektor

Multipliziert man eine Matrix von links mit einem Vektor, muss die Anzahl der Spalten der Matrix mit der Anzahl der Zeilen des Vektors übereinstimmen.

Um das erste Element des Ergebnisvektors zu erhalten, werden die Elemente der ersten Zeile mit den Elementen des Vektors multipliziert und addiert. Dargestellt an einer 3x3 Matrix und einem 3x1 Vektor:

Av=(abcdefghi)(xyz)=(ax+by+czdx+ey+fzgx+hy+iz)=(b1b2b3)=bA\cdot\overrightarrow v=\begin{pmatrix}a&b&c\\d&e&f\\g&h&i\end{pmatrix}\cdot\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}ax+by+cz\\dx+ey+fz\\gx+hy+iz\end{pmatrix}=\begin{pmatrix}{ b}_1\\{ b}_2\\{ b}_3\end{pmatrix}= \overrightarrow bAv=adgbehcfixyz=ax+by+czdx+ey+fzgx+hy+iz=b1b2b3=b

        ax+by+cz=b1dx+ey+fz=b2gx+hy+iz=b3\def\arraystretch{1.25} \;\;\Rightarrow\;\;\left.\begin{array}{c}ax+by+cz=b_1\\dx+ey+fz=b_2\\gx+hy+iz=b_3\end{array}\right.ax+by+cz=b1dx+ey+fz=b2gx+hy+iz=b3

Zugehöriges hom*ogenes Gleichungssystem: Av=0A\cdot\overrightarrow{v}=0Av=0

Hilfestellung:

Bei der Multiplikation mit einem Vektor wird immer eine Spalte der Matrix mal dem Vektor genommen.

Stell dir vor, dass der Vektor wie die Zeilen der Matrix waagerecht statt senkrecht liegt und jeweils ein Wert der Matrixzeile und ein Wert des Vektors multipliziert und dann mit einem Plus verbunden werden.

mit b=(b1bn)b=\begin{pmatrix}{ b}_1\\\vdots\\{ b}_ n\end{pmatrix}b=b1bn   Ax=b\Rightarrow\; A\cdot \vec{x}= \vec{b}Ax=b     i=1najixi=bj\;\;\Rightarrow\sum_{i=1}^n a_{ji}{ x}_ i={ b}_ ji=1najixi=bj

zugehöriges hom*ogenes System:     Ax=0          i=1najixi=0  \Rightarrow\;\; A\cdot \overrightarrow{x}=0\;\;\;\Rightarrow\;\;\sum_{i=1}^n a_{ji}{ x}_ i=0\;Ax=0i=1najixi=0

Multiplikation zweier Matrizen

Um zwei Matrizen multiplizieren zu können, muss die Anzahl der Spalten der linken Matrix gleich der Anzahl der Zeilen der rechten Matrix sein.

Um die Elemente der Ergebnismatrix zu erhalten, multipliziert man die Elemente der jeweiligen Zeile der linken Matrix mit den Elementen der jeweiligen Spalte der rechten Matrix und addiert die Ergebnisse.

Um also das Element eije_{ij}eij zu erhalten, multipliziert man die i-te Zeile der ersten Matrix mit den Elementen der j-ten Spalte der zweiten Matrix und addiert die Ergebnisse.

(a11a1nam1amn)(b11b1kbn1bnk)=(a11b11++a1nbn1a11b1k++a1nbnkam1b11++amnbn1a11b1k++amnbnk)\begin{pmatrix}\color{red}{ a}_{11}&\color{red}\cdots&\color{red}{ a}_{ 1n}\\\vdots&\ddots&\vdots\\{ a}_{m1}&\cdots&{ a}_{mn}\end{pmatrix} \cdot \begin{pmatrix}\color{red}{ b}_{11}&\cdots&{ b}_{ 1k}\\\color{red}\vdots&\ddots&\vdots\\\color{red}{ b}_{n1}&\cdots&{ b}_{nk}\end{pmatrix}=\begin{pmatrix}\color{red}{ a}_{11}\cdot b_{11}+\cdots + a_{1n}\cdot b_{n1}&\cdots&{ a}_{ 11}\cdot b_{1k}+\cdots + a_{1n}\cdot{ b}_{nk}\\\vdots&\ddots&\vdots\\{ a}_{m1}\cdot b_{11}+\cdots +a_{mn}\cdot{ b}_{n1}&\cdots&{ a}_{11}\cdot b_{1k}+\cdots +a_{mn}\cdot{ b}_{nk}\end{pmatrix}a11am1a1namnb11bn1b1kbnk=a11b11++a1nbn1am1b11++amnbn1a11b1k++a1nbnka11b1k++amnbnk

Beispiel:

(123456)(142536)=(11+22+3314+25+3641+52+6344+55+66)=(14323277)\begin{pmatrix}\color{red}1&\color{red}2&\color{red}3\\4&5&6\end{pmatrix} \cdot \begin{pmatrix}\color{red}1&4\\\color{red}2&5\\\color{red}3&6\end{pmatrix}=\begin{pmatrix}\color{red}1\cdot1+2\cdot 2+3\cdot3 &1\cdot 4+2\cdot 5+3\cdot 6\\4\cdot 1+5 \cdot 2+6 \cdot 3 &4 \cdot 4+5\cdot 5+6\cdot 6\end{pmatrix}=\begin{pmatrix}14&32\\32&77\end{pmatrix}(142536)123456=(11+22+3341+52+6314+25+3644+55+66)=(14323277)

Die Multiplikation zweier Matrizen ist nicht kommutativ.

Sie ist aber assoziativ: (AB)C=A(BC)\left(A\cdot B\right)\cdot C=A\cdot\left(B\cdot C\right)(AB)C=A(BC)

Sie ist distributiv:

(A+B)C=AC+BC\left(A+B\right)\cdot C=A\cdot C+B\cdot C(A+B)C=AC+BC

C(A+B)=CA+CBC\cdot\left(A+B\right)=C\cdot A+C\cdot B C(A+B)=CA+CB

Lineares Gleichungssystem

ax+by+cz=b1dx+ey+fz=b2gx+hy+iz=b3\def\arraystretch{1.25} \left.\begin{array}{c}ax+by+cz=b_1\\dx+ey+fz=b_2\\gx+hy+iz=b_3\end{array}\right.ax+by+cz=b1dx+ey+fz=b2gx+hy+iz=b3

    Av=(abcdefghi)(xyz)=b\Rightarrow\;\; A\cdot\overrightarrow{ v}=\begin{pmatrix} a& b& c\\ d& e& f\\ g& h& i\end{pmatrix}\cdot\begin{pmatrix} x\\ y\\ z\end{pmatrix}=\overrightarrow{ b}Av=adgbehcfixyz=b

        \;\;\Rightarrow\;\; Jedes lineare Gleichungssystem lässt sich als Produkt einer Matrix mit einem Vektor schreiben, wobei AAA die Koeffizientenmatrix darstellt. Um dies zu lösen, wird die erweiterte Koeffizientenmatrix (Ab)=(abcdefghib1b2b3)\def\arraystretch{1.25} ( A \mid b) =\left(\begin{array}{ccc} a& b& c\\ d& e& f\\ g& h& i\end{array}\left|\begin{array}{c}{ b}_1\\{ b}_2\\{ b}_3\end{array}\right.\right)(Ab)=adgbehcfib1b2b3 benötigt, die man dann entsprechend umformt.

Allgemein

a11x1++an1xn=b1a1mx1++anmxn=bm\def\arraystretch{1.25} \left.\begin{array}{c} a_{11} \cdot x_1 + \dots + a_{n1} \cdot x_n &= b_1\\ \vdots & \vdots\\ a_{1m} \cdot x_1 + \dots + a_{nm} \cdot x_n &= b_m \end{array}\right.a11x1++an1xna1mx1++anmxn=b1=bm

(a11x1++an1xna1mxm++anmxn)=(b1bm)\Rightarrow\left.\begin{pmatrix}a_{11} \cdot x_1 + \dots + a_{n1} \cdot x_n\\\vdots\\a_{1m} \cdot x_m + \dots + a_{nm} \cdot x_n\end{pmatrix} =\begin{pmatrix}b_1\\\vdots\\ b_m\end{pmatrix}\right.a11x1++an1xna1mxm++anmxn=b1bm

Ein lineares Gleichungssystem lässt sich immer als Produkt einer Matrix mit einem Vektor schreiben.

AAA nennt man Koeffizientenmatrix vom linearen Gleichungssystem

Ax=(a11a1nam1amn)(x1xn)=b\Rightarrow A\cdot \vec{x} = \begin{pmatrix}a_{11} & \dots & a_{1n}\\\vdots & \ddots & \vdots\\a_{m1} & \dots & a_{mn}\end{pmatrix} \cdot\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix} = \vec{b}Ax=a11am1a1namnx1xn=b

Erweiterte Koeffizientenmatrix

Um dies zu lösen, benötigen wir die erweiterte Koeffizientenmatrix (Ab)(A\mid b)(Ab).

Beispiel

2x+4y5z=23x8z+4y=93z4x+4y=2\def\arraystretch{1.25} \left.\begin{array}{c}2x+4y-5z=2\\3x-8z+4y=9\\3z-4x+4y=2\end{array}\right.2x+4y5z=23x8z+4y=93z4x+4y=2

Bei der Umwandlung in eine erweiterte Koeffizientenmatrix muss man beachten,

dass in der Matrix die Werte vor xxx, yyy und zzz untereinander stehen.

Deshalb ist es von Vorteil, anfangs die Gleichungen zu "sortieren".

Umformungen

Die Lösung ändert sich nicht bei diesen Umformungen:

  1. Zeilen vertauschen.

  2. Das Vielfache einer Zeile von einer anderen abziehen oder dazu addieren

  3. Zeile durch eine Zahl (ungleich Null) teilen oder mit einem Faktor ungleich 000 multiplizieren.

Die erweiterte Koeffizientenmatrix kann durch diese Umformungen auf verschiedene Formen gebracht werden. Zu beachten ist, auch die Koeffizienten b1,,bm{b}_1,\ldots,{b}_mb1,,bm mit umzuformen. Die häufigste Art, eine solche Matrix zu lösen, ist der Gaußalgorithmus, in dem die Matrix auf Stufenform gebracht wird, sodass sie folgende Form hat:

(1a1a201a3001b1b2b3)\def\arraystretch{1.25} \left(\begin{array}{ccc}1&a_1&a_2\\0&1&a_3\\0&0&1\end{array}\left|\begin{array}{c}b_1'\\b_2'\\b_3'\end{array}\right.\right)100a110a2a31b1b2b3

Allgemein

(a11a1nb1000annbn)\def\arraystretch{1.25} \left(\begin{array}{cccc|c}{ a}_{11}&\cdots&\cdots&{ a}_{1n}&b_1\\0&\ddots&&\vdots&\vdots\\\vdots&&\ddots&\vdots&\vdots\\0&\cdots&0&{ a}_{nn}&b_n\end{array}\right)a11000a1nannb1bn

Wenn man diese Form erreicht hat, führt man entweder die Matrix wieder auf Gleichungen zurück und löst diese dann oder man formt weiter um. Bei eindeutig lösbaren Gleichungssystemen kann man dann

erreichen, d. h. die Matrix hat in der Diagonale 111 und sonst überall 000.

Rang einer Matrix

Formt man die Matrix zu einer Stufenform um, lässt sich leicht erkennen, welche Zeilen 0 werden. Die Anzahl der Nicht-Nullzeilen ist dann der Rang rrr der Matrix. Besitzt eine Matrix keine Nullzeile, so hat sie "vollen Rang".

Eine Matrix mit Rang rrr hat nach den Umformungen also diese Gestalt:

A=(a11a1r000arr0000)\def\arraystretch{1.25} A= \left(\begin{array}{cccccc}{ a}_{11}&\cdots&\cdots&{ a}_{1r}&\cdots&\cdots\\0&\ddots&&\vdots&&\vdots\\\vdots&&\ddots&\vdots&&\vdots\\0&\cdots&0&{ a}_{rr}&\cdots&\cdots\\ 0 &\cdots&\cdots &\cdots &\cdots&0\\ \vdots &&&&&\vdots\\0 &\cdots&\cdots &\cdots &\cdots&0 \end{array}\right)A=a1100000a1rarr00 Rang von A=rg(A)=rA = \text{rg}(A) = rA=rg(A)=r

Dabei sind die Diagonalelemente a11a_{11} a11 bis arra_{rr}arr alle von null verschieden.

Übungsaufgaben

Weitere Aufgaben zum Thema findest du im folgenden Aufgabenordner:
Aufgaben zur Matrix-Vektor-Multiplikation

Matrizen - lernen mit Serlo! (2024)
Top Articles
Baked Sweet and Sour Chicken Recipe - The Recipe Critic
Sizzling Tofu Recipe inspired by Max's | Foxy Folksy
Poe T4 Aisling
Chris Provost Daughter Addie
Affidea ExpressCare - Affidea Ireland
Kristine Leahy Spouse
27 Places With The Absolute Best Pizza In NYC
AB Solutions Portal | Login
Draconic Treatise On Mining
Texas (TX) Powerball - Winning Numbers & Results
Wunderground Huntington Beach
Inevitable Claymore Wow
RBT Exam: What to Expect
History of Osceola County
Mals Crazy Crab
Aldine Isd Pay Scale 23-24
Craigslist Maui Garage Sale
/Www.usps.com/International/Passports.htm
18889183540
Promiseb Discontinued
Parc Soleil Drowning
Craigslist Northfield Vt
Dewalt vs Milwaukee: Comparing Top Power Tool Brands - EXTOL
Jobs Hiring Near Me Part Time For 15 Year Olds
Anotherdeadfairy
Wnem Tv5 Obituaries
Surplus property Definition: 397 Samples | Law Insider
Craigs List Jonesboro Ar
Telegram Voyeur
3569 Vineyard Ave NE, Grand Rapids, MI 49525 - MLS 24048144 - Coldwell Banker
Is Holly Warlick Married To Susan Patton
Bolly2Tolly Maari 2
Delete Verizon Cloud
Www Mydocbill Rada
Ff14 Laws Order
Elanco Rebates.com 2022
Nail Salon Open On Monday Near Me
Mp4Mania.net1
Metro 72 Hour Extension 2022
CVS Near Me | Somersworth, NH
Afspraak inzien
拿到绿卡后一亩三分地
Woodman's Carpentersville Gas Price
Cdcs Rochester
Luvsquad-Links
Former Employees
Smite Builds Season 9
Does Target Have Slime Lickers
Child care centers take steps to avoid COVID-19 shutdowns; some require masks for kids
Zipformsonline Plus Login
Dolce Luna Italian Restaurant & Pizzeria
Gummy Bear Hoco Proposal
Latest Posts
Article information

Author: Merrill Bechtelar CPA

Last Updated:

Views: 6009

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Merrill Bechtelar CPA

Birthday: 1996-05-19

Address: Apt. 114 873 White Lodge, Libbyfurt, CA 93006

Phone: +5983010455207

Job: Legacy Representative

Hobby: Blacksmithing, Urban exploration, Sudoku, Slacklining, Creative writing, Community, Letterboxing

Introduction: My name is Merrill Bechtelar CPA, I am a clean, agreeable, glorious, magnificent, witty, enchanting, comfortable person who loves writing and wants to share my knowledge and understanding with you.